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S.C.Chatterji 

Let ( a b  , ~2 ,P) be a probability space and let X be a Banach space. A sequence of 

:<-value? sochner-integrable random variables f on 52 will be said to form a martin- 

;;ale with respect to the sub algebras an n=1,2,.. ., a,, con+,, (in siiort 
is a martingale ) if 

n 

fn* a n 

OLn 
E fn+l = fn n 2 I, 

. xhere E is the conditional expectation operator with respect to the G -algebra on. 
it is known that these operators are well-defined for arbitrary 3anach-space-valued 

integrables functions. In the following it w i l l  be assumed that the algebra 

a= e a n  generates the G-algebra @ . The general case can be handled via 
n= I 

standard reduction to this case. 

Ly main concern will be proving almost everywnere (a.e.) convergence theorems for 

martingales. For the sake of brevity, I shall limit myself in this talk to considering 

only the following statements: 

(sq): If 

(s2): If {fn,onj is a martingale and the fnfs are uniformely integrable (i.e. 

fn = Ean f then lim fn = f a.e. (strong limit in X) 
n-sa) 

then ' such that N+ 00 

lim fn = fa 
n-. 03 a.e. 

( s 3 ) :  If [fn, en< is a martingale with sup E( i \  fn[\ ) < 00 then 3 fa such that 
n>l 

lim f = f 
nJOO n co a.e. 
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In $ 2 I shall prove that (SI) is always true. In this generality, the result is proved 
by otherrmethods in Chatterji (2b) and also in A . I .  and (3.1. Tulcea (6). The present 

proue, paralleling the proof in the scalar-valued case as in Billingsley (I), is as 

simple ( possibly, some would wish to say trivial ) as one could wish for. 

In $j 3 ,  I shall prove the main theorem of thid paper viz, that if X satisfies the 
following (RN) condition (RN for Radon-Nikodym) then ( S 3 )  ( and hence trivially (S2)) 

is valid for all martingales. The condition referred to is: 

(RN)  : Every 6 -additive X-valued set function p on & of bounded variation with the pro- 

perty that v, , the variation o f p  , is absolutely continuous with respect to P(V,(rP) 

can be represented as the indefinite integral of a X-valued Sockner-integrable func- 

tion. The non-negative measure Vy is defined as follows: 

The implicztion (RN)  3 ( S 3 )  is more general than the statements obtainable from (6). 

It also follows that ( S 3 )  is valid for reflexive X separable dual spaces X, statements 
explicitly made in ( 6 ) .  For reflexive X, ( S 2 )  (weaker than (S ) )  was proved by different 

methods in (2a,b) and by Scalora (5). That some condition on X is necessary for the vali- 

dity of ( S 2 )  o r  ( S ? )  ist demonstrated by the counterexample in (2a). Here a martingale fn 

7 

1 is constructed which talres values in L (0,l) and which does not converge in any sense, 

weak or strong, anywhere, althoug amongst other things, /\fn\I E I for all n3l. 

In $ 4, it is shown that the (EN) condition is alsonecessary,if @ is seperable 

(generared by a denumberable class of subsets). Kore precisely, in this case ( S 2 ) ,  

(S3) and (RN)  are equivalent conditions. 

- $ 2: The main probabilistic tool is the following lemma: 

Lemma 1: 

F o r  any martingale ifn, ";, 1, if A E Q and & > 0 then 
I10 



lcm is known and an easy consequence of the fact that 11 fn / i  is a submartingale. 
A L. 

- - c  <>Tt'Xl 1. - 
,s,) : For any space x, 

SAetch of proof: If f is measurable Of = 

:or sufficiently large n. for a general f, 3 fE measurable CX such that 

lim 
n+w 

E a ,  f = f a.e. (p). 

@n 3 an  then (SI) is trivial since E 
el 

f=f 

E ( I I f - f I I )  4 E 

::le following obvious inequality 

coupled with lemma 1 leads us to (SI) quite smoothly. 

Given a martingale / fn, Bn{ , define the set-functions 2 on an as follows: 

( A )  = 

The martingale property is equivalent to the property that L,, is an extension of 
t o  an+l* 
functionpon a i s  an X-valued finitely additive set-function. The set-function is of 

bounded variation if f sup J I  fn !I dP < 00. The main difficulty in proving martingale 

n 
00 

Hence for any A E Or= u 
n= 1 n*o3 

01 n 7  lim p(A) = p ( A )  exists. The set- 

no 1 
convergence theorems is thatp may not be cr -additive. The following lemma gives a 

way out. 

Lemma 2: 

Let P be a probability measure on the algebra 81 of subsets of a space 52 and 
finitely additive X-valued set-function of bounded variation an 6L Then 

a 

where ?,E are both of bounded variation and 7 is a finitely additive set-function 



3uch t h a t  V 

3 A E m ,  P ( A ) < E ,  V 1  ( A ' )  < & ) and 

absolu te ly  continuous with respect  t o  P (i.e. givenE>O ,3  

( t h e  v a r i a t i o n  of 7 ) i s  s ingular  with respect  t o  P ( i .e .  given E , d> 0 ,  7 
G i s  a 6 -addi t ive set-funct ion such t h a t  V, i s  

* 
67 O , P ( A ) r : & +  & ( A )  < & ) 

The main idea  behind t h e  proof  of t h e  lemma will be sketched. One t r a n s f e r s  P and p t o  

t h e  space (S, F_ where S i s  a t o t a l l y  disconnected compact Hausdorff space and E l  

i s  t h e  algebra ofclopen s e t s  i n  S, XI being isomorphic t o  BL It t u r n s  out  t h a t  P 

and gene- 

r a t e d  by r,,. (These are standard methods i n  t h i s  Sort  of work; see  e.g. ( 3 )  pp.342- 

13 ). On these  extended measures on Z 2  apply t h e  LeDesgue-decomposition theorem a s  

proved by Rickart  (4) and then r e t r a c e  t h e  way back through E,, t o  a t o  obtain t h e  

decomposition ind ica ted  i n  the  lemma. 

a r e  G -addi t ive on z,, and hence can be extended t o  t h e  G -algebra 

With t h e  h e l p  o f  lemma 2 ,  I s h a l l  now prove t h e  main theorem o f  t h i s  t a l k :  

Theorem 2: 

If X s a t i s f i e s  t h e  (RN)  property with respect  t o  P on then any martingale 

{ fn,  an] with sup 
n >I 

iifni!dP < 00 converges i.e. 3 fa, such t h a t  

l i m  f n  = f m  a.s. (P) 
n+co 

Sketch of t h e  proof: Let p be a s  before and 7 , G a s  i n  lemma 2. p r e s t r i c t e d  t o  f i n  
i s  an i n t e g r a l .  G ,  being absolu te ly  continuous with resoec t  t o  P, i s  a l s o  an i n t e g r a l  

s i n c e  X has t h e  (RN)  property. 

Hence r e s t r i c t e d  t o  81, i s  a l s o  an i n t e g r a l  i.e. 

I n  o t h e r  words, f n  = on + hn 

where gn,h a r e  a l s o  martingales with respect  t o  an .  n 



:.!oreover hn is $ h and hence theorem 1 ensures the convergence of hn to a limit. 

I shall now snow that lim g = 0 a.s. (P). n 

Given ,1 > E , 6 > 0, find A E 61 ( and hence A E 0 for some no> such that 
P(A' )  + V 7 ( A )  < 6€ 7 . 

This is clearly enough to show that lim gn = 0 a.s. (PI 

- '3 4. In -chis section, the main thing is the following lemma for real-valued submar- 

r;inTales : 

L e m a  3: 

If { gn, n), is a positive submartingale with sup E (g,) 4 00 such that 
n>l 

a3 

n=l 
g, dP, A E 8L = u an 4sl a 0' - additive P-con- p (A)  = lim 

n+ (I) 

tinuous set-function then gn's are uniformely integrable. 

Sketch of proof: 

martingale so that 0 5 gn< hn and such that{h& induces the same p . Hence the lemma. 
If gn> 0 is a martingale then it is easy. In general3 hn a 

'i'heorem 3: 

If IB is separable then (S2)-+ (RN)  . Hence in this case ( S 2 ) e  ( S 3 )  +> (MI. 

Sketch of proof: 

generated by A,, . . . . .A, .  Given a set-function p on & satisfying the condition in ( R N ) ,  

the martingale 

Let (3 be generated by A,, ,A2,... and (3, = the 6 -algebra 

fn, on$ induced by p is such that / I  f,!I satisfies the conditions 



~~ 

6f Lemma 3 .  Hence ( S 2 )  implies the convergences of f n  t o  fa,. From hereon it is trivial 

tb show$, that 

Note : 

In the real-valued case the general martingale convergence theorem S can be deduced 

rapidly from SI by the following sequence of arguments: 

is the indefinite integral of f,. 1.. 

- 
I 
I 

3 I 
i 

(I) (SI) 3 (S2) 

f --+ f weakly in L1 for some f. 

because fn uniformely integrable implies that 3 hk such that 

"k 

Hence E OQ f - E an f weakly. But Eon f 
nk k+oo nk 

= fn for large nk. Hence 

an E f = fn etc. Next 

(11) every uniformely integrable submartingale converges: this follows from (i) via the 

Doob-decomposition for submartingales. 

(111) Every positive martingale fn converges since e-fn is a uniformely bounded semi- 

martingale. 

, 
(IV) An arbitrary martingale f, with sup E f', < a3 converges because it is the dif- 

I ference of two positive martingales and (111). 
I 

1 From here the same theorem f o r  submartingales can also be easily obtained. 

I 

i 
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